In a table of indefinite integrals, there is no need for absolute-value signs. Further, it is unusual to assume that parameters and variables are real. The above is not an isolated instance. In some cases, when absolute value signs are not used, sufficient conditions are given, as in

$$
\int \frac{D X}{X(A-B X)}=\frac{1}{2 A} \operatorname{LN}\left(\frac{X}{B X^{2}-A}\right),
$$

if $A<0$ and $B<0$ and $X>(A / B)^{1 / 2}$.
In summary, the principal virtue of the project is that computer techniques could be used to produce the table. This is currently an important consideration in view of cost of publication. The tables are useful though they are not new. Eventually, one must forever be mindful of the possibility of human error.
Y. L. L.

14 [7,10].-H. W. Gould, Research Bibliography of Two Special Number Sequences, Number 12 of Mathematica Monongaliae, Department of Mathematics, West Virginia University, Morgantown, West Virginia, May 1971, iv +25 pp. One copy deposited in the UMT file.
Herein are presented two definite bibliographies: the first, of 137 items, relates to the Bell (or exponential) numbers; the second, of 243 items, to the Catalan numbers (also studied originally by Euler, Fuss, and Segner, as noted by the author).

An introduction of four pages includes the various definitions of these two integer sequences, their generating functions, recurrence relations, and their relations to other numbers such as binomial coefficients and Stirling numbers of the second kind. This is supplemented by pertinent historical information and references to the numerous combinatorial interpretations of these numbers.

The present work supersedes earlier, related bibliographies, of which the most extensive are included in expository papers by Rota [1] and Brown [2] cited by the author. The most extensive table of Bell numbers appears to be that in a paper by Levine \& Dalton [3], also included in the present bibliography.

This scholarly report should be of special value to researchers in such fields as combinatorial analysis and graph theory.
J. W. W.

1. Gian-Carlo Rota, "The number of partitions of a set," Amer. Math. Monthly, v. 71, 1964, pp. 498-504.
2. W. G. Brown, "Historical note on a recurrent combinatorial problem," Amer. Math. Monthly, v. 72, 1965, pp. 973-977.
3. Jack Levine \& R. E. Dalton, "Minimum periods, modulo p, of first-order Bell exponential integers," Math. Comp., v. 16, 1962, pp. 416-423.

15 [9].-Hideo Wada, "A table of fundamental units of purely cubic fields," Proc. Japan Acad., v. 46, 1970, pp. 1135-1140.

The table gives the fundamental unit ϵ of the cubic field $Q\left(m^{1 / 3}\right)$ for all such fields with $m<250$ in the form

$$
\begin{equation*}
\epsilon=\left(A+B \alpha+C \alpha^{2}\right) / n \tag{1}
\end{equation*}
$$

